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ABSTRACT

Genotype frequency information for one or more loci are used within a Bayesian
modelling framework to assign relative probabilities to alternative stock-structure
hypotheses by means of the Bayes factor approach. This framework has advantages
over maximum likelihood estimation as it provides the information needed to select
amongst hypotheses. When applied to the data for the Adh-]1 and Gpi loci for sub-
areas 6, 7 and 11 for the North Pacific minke whales, the results confirm those of
previous studies that there are (at least) two stocks in these sub-areas. In contrast,
applications to data for sub-areas 7, 8 and 9 support the hypothesis of a single stock
in these sub-areas, unless it can be argued that, a priori, the allele frequencies for two
stocks that are adjacent spatially are likely to be very similar.

INTRODUCTION

Punt ef al. (1995) and Butterworth et al. (1996) analysed Adh-1 and Gpi locus data
using maximum likelihood methods to estimate mixing proportions for the J and O
minke whale stocks in sub-area 7 of the North Pacific. A disadvantage of these
methods is that while rejection of the null hypothesis of single stock can be used to
identify the presence of multiple stocks, an inability to reject this null hypothesis does
not imply necessary acceptance of the hypothesis of a single stock. There are two
reasons for this, The first is the sample size effect - if the sample sizes are too low, the
null hypothesis may not be rejected even if there are two stocks present and
apparently marked differences between the samples (i.e. the power of the test is too
low). The second reason is that the underlying allele frequencies for two stocks that
are found close to each other spatially may be very similar (in part because of
occasional genetic exchange between the two stocks). In such circumstances, there
may be inadequate power to distinguish the difference in frequencies, even given
relatively large sample sizes.

Bayesian methods can be used to calculate the relative probability of alternative
hypotheses by means of the Bayes factor (Jeffreys, 1961). For example, Wade and
DeMaster (1996) contrasted alternative models for the dynamics of the Eastern North
Pacific stock of gray whales using this framework.

This paper develops single- and two-stock models for allele-frequency data, where
these models are then fitted using a Bayesian approach. This overall framework is



then used to examine stock-structure hypotheses for minke whales in sub-areas 6, 7, 8,
9 and 11 of the North Pacific.

MATERIAL AND METHODS

The allele frequency data available for the analyses are listed in Table 1. They have
been aggregated over years into three bi-monthly periods (April-May, June-July, and
August-September) and are presented for five of the thirteen sub-areas for the North
Pacific minke whales. Allele frequency data obtained from commercial operations are
available for sub-areas 6, 7 and 11, while the JARPN programme has provided such
data for sub-areas 7, 8, 9 and 11. Data for alleles that constitute a very small fraction
of the total (i.e. dg, di, gg, gh, and hi for the Adh-1 locus) are omitted from Table 1
and the calculations of this paper.

Under the assumption of Hardy-Weinberg equilibrium, the fractions of the three
major genotypes for each locus: (for example, hh, dh, and hh for the Adk-1 locus) in a
homogenous stock are: f,, = p°, f, =2p(1-p) and f, =(1-p)*, where p is the
Adh-1" proportion. If it can be assumed that only a single (homogeneous) stock is
found in a given sub-area A, the value for p%,, , the Adh-1" proportion for sub-area 4,

can be estimated by maximising the following log-likelihood (ignoring constant
terms):
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where n/i  is the number of samples from sub-area4 with genotype hh,
nj,  is the number of samples from sub-area 4 with genotype dh, and

ns,  is the number of samples from sub-area4 with genotype dd.

If then similar data become available for another sub-area B, a straightforward
extension of this maximum likelihood approach can be used to reject the assumption
that there is only one stock in the two sub-areas. However, for the reasons given
above, failure to show a significant lack of fit for a single-stock model to such data
does not provide conclusive evidence of a single stock only in both sub-areas.

Even so, it is not acceptance/rejection of various stock structure hypotheses that is
essential for the interpretation of the results of the Implementation Simulation Trials
for the North Pacific minke whales (IWC, 1999), but rather the assignment of relative
probabilities to such hypotheses. This necessitates changing from maximum
likelihood to Bayesian methods. Under the latter paradigm, comparison of two models
(1 and 2) by means of the Bayes factor involves the determination of the ratio:

RIB = [[LD18)p(@)ds,/ [[L(D|8,)p:(9,)d9, @
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where B is the probability of model 1,
P, is the probability of model 2,

2
L(D |¢$) is the likelihood of the data given the vector of parameters ¢,



¢, is the parameter vector for model 1,

¢, 1s the parameter vector for model 2,

nle,) is the prior probability distribution for model 1, and
P (@2) is the prior probability distribution for model 2.

The value of the Bayes factor provides a quantitative measure of the relative weight of
evidence in favour of models 1 and 2. For example, the value of Equation (2) in the
limit of no informative data is 1, which indicates no preference for either model.
Jeffreys (1961) and Kass and Raftery (1995) provide the following guidelines for the
interpretation of values for the Bayes factor:

(a) Jeffreys (1961)
Bayes Factor Interpretation
1to3.2 Not worth more than a bare mention
3.2t010 Substantial
10 to 100 Strong
>100 Decisive

(b) Kass and Raftery (1995)

Bayes Factor Interpretation
1to3 Not worth more than a bare mention
3t020 Positive
20 to 150 Strong
>150 Very strong

Consider a situation where the Bayes factor is to be used to compare a single-stock
model {model 1) with a two-stock model (model 2), where data are available for two
sub-areas A and B based on the Adh-1 locus. Model 1 has a single parameter

ph. =p5., while model 2 has two parameters p4, and p%, which may (or may
not) be the same. A reasonable prior for pj, (and hence also pZ, for model 1) is
U[0, 11, because a priori there is no reason to favour any one value over another for
this proportion. However, this is not a reasonable prior for pZ, for model 2, as there

is some a priori chance that p> is positively correlated to p7,, . This is because the

Adh-1 proportion for stocks that are adjacent in space may be similar as a result of
limited genetic interchange (and/or common ancestry). The particular formalism
chosen in this paper to model this a priori correlation is to assume a mixture

distribution for the prior for p%,.. This prior is U[0,1] with probability x and a
distribution proportional to a symmetric triangular function centred on pj, of width
2e with probability 1-x. This shape is illustrated in Fig, 1 - in cases where one or both
sides of the triangle intersect the possibilities of 0 and/or 1 for pZ, , the normalisation
of the prior is adjusted appropriately. Other forms for the distribution centred at
D’y could have been considered (e.g. normal), but this simple function is sufficient

for the purposes of this paper which considers wide ranges of possible values for x
and e. This mixture distribution therefore captures the range from a pure uniform prior




(x=1) to a delta-function prior at pJ, (x=0;e=0). Naturally, the Bayes factor for an
analysis based on this last prior would be 1.

Either genetic mutation rate models, empirical evidence from adjacent stocks of the
same species, or some combination of the two could form the basis for developing a

prior for p%, , i.e. choosing values for e and x for the context considered here. Such

considerations are beyond the scope of this paper, which is why the resuits of
computations of Bayes factors are shown across wide ranges of values for these
parameters. These computations were effected by integrating Equation (2)
numerically using a simple (and therefore somewhat inefficient) variant of the
Sample-Importance-Resample algorithm (Rubin, 1987).

RESULTS AND DISCUSSION

J vs O stock comparisons

There is substantial evidence from allele frequency (Wada, 1984, 1991; Punt et al.,
1995; Butterworth et al., 1996), conception date (Best and Kato, 1992), mtDNA
(Goto and Pastene, 1997) and morphological (Kato et al., 1992) information, that two
minke whale stocks (J and O) are present in North Pacific sub-areas 6 (J stock) and
7+11 (primarily O). There is certainly mixing in sub-area 11 in April-May, and there
may also be some J animals present in this sub-area in other months, and in sub-area 7
in August-September. A first test of the framework described above is therefore to
apply it to the data for sub-areas 6, 7 and 11 to determine whether it provides a result
that is consistent with those of previous investigations.

Table 2 lists the value of the Bayes factor (i.e. P,/P ) and the fraction of the total
percentage probability assigned to the single-stock model, model 1 (ie.
100 R, /(F, + P,}) for a range of values for e and x. Results are shown in this Table for
analyses based on each of the Adh-1 and Gpi loci. The analyses in question compare
the allele frequencies for sub-area 6 with those for sub-areas 7, and also with those for
sub-areas 7 and 11 combined. For this last data set, the samples for the April-May
period are omitted as it is known that substantial mixing between J and O stock

animals occurs in sub-area 11 during this period (Punt et al., 1995; Butterworth et al.,
1996).

The results in Table 2 conform exactly to expectations. Except for the case in which
the prior for p}, is virtually perfectly correlated with pj,, (e=0.01, x=0.00), the
single stock model is accorded virtually no probability relative to that of the single
stock model. In all but this case, use of the Jeffreys/Kass and Raftery guidelines

would lead to the conclusion that evidence in favour of two stocks is “decisive” /
“very strong”.

O vs W stock comparisons

For the purposes of these comparisons, it is assumed that the O stock is restricted to
sub-areas 7 and 11 (the data for sub-area 11 in April-May are ignored for the reason
given above), and consideration is given to the possibility that sub-areas 8 and 9 may
contain a separate (W) stock. Table 3 lists the values for the Bayes factor and the
fraction of the total probability assigned to the single-stock model for the Adh-1 and
Gpi loci separately, while Table 4 lists these values when the data for the two loci are



,,,,,,,

analysed together (the Scientific Committee has previously accepted that it is
legitimate to treat these two sources of data as independent (IWC, 1997)). Results are
shown in Tables 3 and 4 for the same factors as Table 2, except that, additionally, the
sensitivity to excluding the data collected from commercial operations is examined.

Considering the results for each locus separately first, the Bayes factor indicates a
preference for a single stock hypothesis (i.e. B /P, >1) for all choices for the factors

examined, except when the analysis is based on the JARPN data for the Adh-1 locus.
The extent of preference for the single stock hypothesis (i.e. no W stock) increases (as
expected) with sample size (i.e. using both the JARPN and the commercial data) and
with the values chosen for e and x. The support for the single stock hypothesis for the
analyses based on Adh-1 locus increases if the data for sub-area 11 are omitted,
despite the consequent lower sample sizes. The possibility of preference for the two-
stock model when only JARPN Adh-I data are considered disappears in such
circumstances. The likely reason for this result is the presence of J stock animals in
sub-area 11 during June-July - note the non-zero point estimate for the pertinent
proportion in Table 1 of IWC (1997).

When x 1s 0.01, or when x = 0.1 and e = 0.1 or lower, the bulk of the values for the
Bayes factor would rate as “barely worth a mention” indicating that the data cannot
conclusively select between the single- and two-stock models in those circumstances.
However, these values for x and e comrespond to giving the assumption that the two
stocks may have similar allele frequencies very high weight a priori. When the data
for the two loci are analysed together (Table 4), discriminatory power is greatly
enhanced and the preference for the single-stock hypothesis is considerably increased.
A rating of positive (75% or more of the total probability) is assigned to the single-
stock model for most of the values for e and x when all of the data (commercial and
JARPN, sub-areas 7, 8, 9, and 11) are analysed simultaneously.

Discussion

The framework developed in this paper provides a basis to discriminate between
single-stock and two-stock hypotheses. The results confirm the expectation from
previous analyses that there is more than one stock of minke whales in sub-areas 6
and 7 of the North Pacific, but there is strong support for a single stock only in sub-
areas 7, 8, and 9 for most choices for the parameters that define the prior for the two-
stock model. However, for some choices for this prior (those that imply a high a
priori correlation between the allele proportions for the two stocks), there is little
basis to choose between a single-stock and a two-stock hypothesis. The appropriate
choice of parameter values for a prior distribution for p, based on information for
other adjacent whale stocks and on genetic mutation theory, merits discussion.

The analyses of this paper are restricted to the use of isozyme data and the assumption
that each sub-area included in the analysis contains a single homogeneous stock. In
principle, it is possible to extend the methodology for other sources of data (e.g.
mtDNA information) and for cases where there is mixing. However, this would
increase the number of estimable parameters substantially, complicating both the
design of the prior and the evaluation of the Bayes factor through Equation (2).
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sampled between 1994 and 1999.

Table 1
Genotype frequencies for the Adh-1 and Gpi loci for the North Pacific minke whales
(but omitting very rare Adh-1 alleles). Due to the well-established fact of mixing of J

and O stock animals in sub-area 11 during April-May, the data indicated by the
asterisk are ignored in the calculations of this paper. The JARPN data include animals

Sub-area Period Data source Adh-1 locus Gpi locus

hh dh dd bb | ab aa

6 Sept-Oct  [Commercial| 1 4 40 19 19 4
7 Apr-May JARPN 29 19 8 52 4 0
7 Jupe-July JARPN 23 24 5 52 1 0
7 Aug-Sept JARPN 15 12 3 29 1 0
7 Apr-May |Commercial| 142 127 25 174 5 0
7 June-July [Commercial| 93 90 18 132 7 0
7 Aug-Sept |Commercial| 38 54 13 99 4 0
8 Apr-May JARPN 2 4 2 8 0 0
8 June-July JARPN 31 35 10 73 5 0
8 Aug-Sept JARPN 3 2 0 5 0 0
9 Apr-May JARPN 15 7 2 27 0 0
9 June-July JARPN 55 55 . 7 117 6 0
9 Aug-Sept JARPN 17 17 5 34 4 0
11 June-July JARPN 8 27 12 45 4 0
11 Aug-Sept JARPN 10 10 9 27 3 0
11* Apr-May |Commercial| 64 72 64 112 13 2
11 Jun-July |Commercial| 35 25 9 59 5 1
11 Aug-Sept | Commercial| 11 7 1 14 | 0 0
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